Given the function f(x)=x2−1|x−1|
a.) Find (i)limx→1+f(x)(ii)limx→1−f(x)
(i)limx→1+f(x)=limx→1+x2−1x−1=limx→1+(x+1)\cancel(x−1)\cancel(x−1)=limx→1+(x+1)=1+1=2(ii)limx→1−f(x)=limx→1−x2−1−(x−1)=limx→1−(x+1)\cancel(x−1)−\cancel(x−1)=limx→1−−(x+1)=limx→1−−x−1=−1−1=−2
b.)Is the limx→1f(x) exist?
limx→1f(x) does not exist because the left and right hand limits are different
c.) Sketch the graph of f
No comments:
Post a Comment