Monday, November 26, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 47

Given the function f(x)=x21|x1|

a.) Find (i)limx1+f(x)(ii)limx1f(x)



(i)limx1+f(x)=limx1+x21x1=limx1+(x+1)\cancel(x1)\cancel(x1)=limx1+(x+1)=1+1=2(ii)limx1f(x)=limx1x21(x1)=limx1(x+1)\cancel(x1)\cancel(x1)=limx1(x+1)=limx1x1=11=2


b.)Is the limx1f(x) exist?
limx1f(x) does not exist because the left and right hand limits are different


c.) Sketch the graph of f

No comments:

Post a Comment