The graph of the function $f$ is given below, state the value of each quantity, if it exists.
If it does not exist, explain why.
$
\begin{equation}
\begin{aligned}
\text{a.) }& \lim\limits_{x \rightarrow 0} f(x)\\
\text{b.) }& \lim\limits_{x \rightarrow 3^-} f(x)\\
\text{c.) }& \lim\limits_{x \rightarrow 3^+} f(x)\\
\text{d.) }& \lim\limits_{x \rightarrow 3} f(x) \\
\text{e.) }& f(3)
\end{aligned}
\end{equation}
$
a. Referring to the graph given $\lim\limits_{x \rightarrow 0} f(x) = 3$
b. Referring to the graph given $\lim\limits_{x \rightarrow 3^-}f(x) = 4$
c. Referring to the graph given $\lim\limits_{x \rightarrow 3+}f(x) = 2$
d. Referring to the graph given $\lim\limits_{x \rightarrow 3}f(x)$ does not exist because left and right limits are different.
e. Referring to the graph given $f(3) = 3$
No comments:
Post a Comment