Find the integral ∫813√xdx
Using 2nd Fundamental Theorem of Calculus
∫baf(x)dx=F(b)−F(a), where F is any anti-derivative of f.
Let f(x)=3√x or f(x)=(x)13, then
F(x)=x13+113+1+CF(x)=x4343+CF(x)=3x434+C
∫813√xdx=F(8)−F(1)∫813√xdx=3(8)434+C−[3(1)434+C]∫813√xdx=3[(8)13]44+C−34−C∫813√xdx=3(2)44−34∫813√xdx=3(16)−34∫813√xdx=48−34∫813√xdx=454 or ∫813√xdx=11.25
No comments:
Post a Comment