Sunday, September 30, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 14

Determine the integral π0sin2tcos4tdt


π0sin2tcos4tdt=π0sin2t(cos2t)2dtApply half-angle formulas cos2t=12sin2t and cos2t=2cos2t1π0sin2tcos4tdt=π0(1cos2t2)(cos2t+12)2dtπ0sin2tcos4tdt=π0(1cos2t2)(cos22t+2cos2t+14)dtπ0sin2tcos4tdt=π0(cos22t+2cos2t+1cos32t2cos22tcos2t8)dt π0sin2tcos4tdt=18π0(1+cos2tcos22tcos32t)dtπ0sin2tcos4tdt=18π01dt+18π0cos2tdt18π0cos22tdt18π0cos32tdt


Let u=2t, then du=2dt, so dt=du2. When t=0,u=0 and when t=π,u=2π. We integrate the equation term by term

@ 1st term


18π01dt=182π01du218π01dt=1162π01du18π01dt=116[u]2π018π01dt=116(2π0)18π01dt=2π1618π01dt=π8


@ 2nd term


18π0cos2tdt=182π0cosudu218π0cos2tdt=1162π0cosudu18π0cos2tdt=116[sinu]2π018π0cos2tdt=116(sin2πsin0)18π0cos2tdt=116(0)18π0cos2tdt=0


@ 3rd term


18π0cos22tdt=182π0cos2udu218π0cos22tdt=1162π0cos2uduApply half-angle formula cos2u=2cos2u118π0cos22tdt=1162π0(cos2u+12)du18π0cos22tdt=1322π0(cos2u+1)du


Let v=2u, then dv=2du, so du=dv2. When u=0,v=0 and when u=2π,v=4π


132320(cos2u+1)du=1324π0(cosv+1)dv2132320(cos2u+1)du=1644π0(cosv+1)dv132320(cos2u+1)du=164[sinv+v]4π0132320(cos2u+1)du=164(sin4π+4πsin00)132320(cos2u+1)du=164(0+4π00)132320(cos2u+1)du=4π64132320(cos2u+1)du=π16


@ 4th term


18π0cos32tdt=182π0cos3udu218π0cos32tdt=1162π0cos3udu18π0cos32tdt=1162π0(cos2u)(cosu)duApply Trigonometric Identities cos2u+sin2u=118π0cos32tdt=1162π0(1sin2u)(cosu)du


Let v=sinu, then dv=cosudu. When u=0,v=0 and when u=2π,v=0. Therefore,


1162π0(1sin2u)(cosudu)=11600(1v2)dv1162π0(1sin2u)(cosudu)=116[vv33]001162π0(1sin2u)(cosudu)=116(0)1162π0(1sin2u)(cosudu)=0


Combine the results of integration term by term


π0sin2tcos4tdt=π8+0π160π0sin2tcos4tdt=2π+0π016π0sin2tcos4tdt=π16

No comments:

Post a Comment