Determine the integral ∫π0sin2tcos4tdt
∫π0sin2tcos4tdt=∫π0sin2t(cos2t)2dtApply half-angle formulas cos2t=1−2sin2t and cos2t=2cos2t−1∫π0sin2tcos4tdt=∫π0(1−cos2t2)(cos2t+12)2dt∫π0sin2tcos4tdt=∫π0(1−cos2t2)(cos22t+2cos2t+14)dt∫π0sin2tcos4tdt=∫π0(cos22t+2cos2t+1−cos32t−2cos22t−cos2t8)dt ∫π0sin2tcos4tdt=18∫π0(1+cos2t−cos22t−cos32t)dt∫π0sin2tcos4tdt=18∫π01dt+18∫π0cos2tdt−18∫π0cos22tdt−18∫π0cos32tdt
Let u=2t, then du=2dt, so dt=du2. When t=0,u=0 and when t=π,u=2π. We integrate the equation term by term
@ 1st term
18∫π01dt=18∫2π01⋅du218∫π01dt=116∫2π01du18∫π01dt=116[u]2π018∫π01dt=116(2π−0)18∫π01dt=2π1618∫π01dt=π8
@ 2nd term
18∫π0cos2tdt=18∫2π0cosu⋅du218∫π0cos2tdt=116∫2π0cosudu18∫π0cos2tdt=116[sinu]2π018∫π0cos2tdt=116(sin2π−sin0)18∫π0cos2tdt=116(0)18∫π0cos2tdt=0
@ 3rd term
18∫π0cos22tdt=18∫2π0cos2u⋅du218∫π0cos22tdt=116∫2π0cos2uduApply half-angle formula cos2u=2cos2u−118∫π0cos22tdt=116∫2π0(cos2u+12)du18∫π0cos22tdt=132∫2π0(cos2u+1)du
Let v=2u, then dv=2du, so du=dv2. When u=0,v=0 and when u=2π,v=4π
132∫320(cos2u+1)du=132∫4π0(cosv+1)⋅dv2132∫320(cos2u+1)du=164∫4π0(cosv+1)dv132∫320(cos2u+1)du=164[sinv+v]4π0132∫320(cos2u+1)du=164(sin4π+4π−sin0−0)132∫320(cos2u+1)du=164(0+4π−0−0)132∫320(cos2u+1)du=4π64132∫320(cos2u+1)du=π16
@ 4th term
18∫π0cos32tdt=18∫2π0cos3u⋅du218∫π0cos32tdt=116∫2π0cos3udu18∫π0cos32tdt=116∫2π0(cos2u)(cosu)duApply Trigonometric Identities cos2u+sin2u=118∫π0cos32tdt=116∫2π0(1−sin2u)(cosu)du
Let v=sinu, then dv=cosudu. When u=0,v=0 and when u=2π,v=0. Therefore,
116∫2π0(1−sin2u)(cosudu)=116∫00(1−v2)dv116∫2π0(1−sin2u)(cosudu)=116[v−v33]00116∫2π0(1−sin2u)(cosudu)=116(0)116∫2π0(1−sin2u)(cosudu)=0
Combine the results of integration term by term
∫π0sin2tcos4tdt=π8+0−π16−0∫π0sin2tcos4tdt=2π+0−π−016∫π0sin2tcos4tdt=π16
No comments:
Post a Comment