Find the integrals ∫913x−2√xdx
∫3x−2√xdx=∫(3x√x−2√x)dx∫3x−2√xdx=∫(3x12−2x−12)dx∫3x−2√xdx=3∫x12dx−2∫x−12dx∫3x−2√xdx=3(x12+112+1)−2(x−12+1−12+1)+C∫3x−2√xdx=2x32−2(2x12)+C∫3x−2√xdx=2x32−4x12+C∫913x−2√xdx=2(9)32−4(9)12+C−[2(1)32−4(1)12+C]∫913x−2√xdx=2[(9)12]3−4(3)+C−2+4−C∫913x−2√xdx=2(3)3−12+2∫913x−2√xdx=54−12+2∫913x−2√xdx=44
No comments:
Post a Comment