Find limθ→0+A(θ)B(θ) for a semicircle with diameter PQ that sits on a isosceles triangle PQR to form a region shaped like a two dimensional ice cream cone, as shown in the figure. Where A(θ) is there area of the semicircle and B(θ) is the area of the triangle.
For the area of semicircle A(θ). We let r be the radius forming this triangle
sinθ2=r10r=10sinθ2
Solving for A(θ)
A(θ)=πr22;where r=10sinθ2A(θ)=π(10sinθ2)22A(θ)=50π(sin2(θ2))
For the area of triangle B(θ) given two sides and an included angle we have,
B(θ)=12absinθB(θ)=12(10)(10)sinθB(θ)=50sinθ
Thus,
limθ→0+A(θ)B(θ)=limθ→0+\cancel50(sinθ2)2\cancel50sinθWe can introduce a factor θθ and θ2θ2 to use the property of limit.limθ→0+A(θ)B(θ)=limθ→0+π(sinπ2)2sinθ(θ\cancelθ)(\cancelθ2θ2)limθ→0+A(θ)B(θ)=limθ→0+π2[(θsinθ)(sinθ2θ2)(sinθ2)]recall that limθ→0sinθθ=1limθ→0+A(θ)B(θ)=limθ→0+π2(1)(1)(sinθ2)limθ→0+A(θ)B(θ)=π2(sinθ2)limθ→0+A(θ)B(θ)=π2sin02limθ→0+A(θ)B(θ)=0
No comments:
Post a Comment