Determine the 
Given: $\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5$ and justify each step by indicating the appropriate limit law(s).
$
\begin{equation}
\begin{aligned}
	\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5 &= \lim\limits_{t \rightarrow -1} (t^2+1)^3 \cdot
														  	 \lim\limits_{t \rightarrow -1} (t+3)^5
														  && \text{(Product Law)}\\
	\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5 &= \left[ 
															   \lim\limits_{t \rightarrow -1} (t^2+1)
															 \right]^3 
															 \left[
															 	\lim\limits_{t \rightarrow -1} (t+3)
															 \right]^5
														  && \text{(Power Law)}\\
	\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5 &= \left(
															   \lim\limits_{t \rightarrow -1} t^2  +
															   \lim\limits_{t \rightarrow -1} 1
															 \right)^3
															 \left(
															   \lim\limits_{t \rightarrow -1} t +
															   \lim\limits_{t \rightarrow -1} 3	
															 \right)^5
														  && \text{(Sum Law)}\\
	\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5 &= \left(
															   \lim\limits_{t \rightarrow -1} t^2+1
															 \right)^3
															 \left(
															   \lim\limits_{t \rightarrow -1} t+3
															 \right)^5
														  && \text{(Constant Law)}\\
	\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5 &= [(-1)^2+1]^3[(-1)+3]^5
	 													  && \text{(Power Special Limit Law)}														   																															
\end{aligned}
\end{equation}\\
\boxed{\lim\limits_{t \rightarrow -1} \quad (t^2+1)^3(t+3)^5 = 256}
$
No comments:
Post a Comment