Thursday, September 20, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 6

Determine the
Given: limt1(t2+1)3(t+3)5 and justify each step by indicating the appropriate limit law(s).


limt1(t2+1)3(t+3)5=limt1(t2+1)3limt1(t+3)5(Product Law)limt1(t2+1)3(t+3)5=[limt1(t2+1)]3[limt1(t+3)]5(Power Law)limt1(t2+1)3(t+3)5=(limt1t2+limt11)3(limt1t+limt13)5(Sum Law)limt1(t2+1)3(t+3)5=(limt1t2+1)3(limt1t+3)5(Constant Law)limt1(t2+1)3(t+3)5=[(1)2+1]3[(1)+3]5(Power Special Limit Law)limt1(t2+1)3(t+3)5=256

No comments:

Post a Comment