Determine the
Given: limt→−1(t2+1)3(t+3)5 and justify each step by indicating the appropriate limit law(s).
limt→−1(t2+1)3(t+3)5=limt→−1(t2+1)3⋅limt→−1(t+3)5(Product Law)limt→−1(t2+1)3(t+3)5=[limt→−1(t2+1)]3[limt→−1(t+3)]5(Power Law)limt→−1(t2+1)3(t+3)5=(limt→−1t2+limt→−11)3(limt→−1t+limt→−13)5(Sum Law)limt→−1(t2+1)3(t+3)5=(limt→−1t2+1)3(limt→−1t+3)5(Constant Law)limt→−1(t2+1)3(t+3)5=[(−1)2+1]3[(−1)+3]5(Power Special Limit Law)limt→−1(t2+1)3(t+3)5=256
No comments:
Post a Comment