Friday, August 24, 2018

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 56

Find the equation of the tangent line and normal line of the curve y=xx+1 at the point (4,0.4)


Required:

Equation of the tangent line and the normal line at P(4,0.4)

Solution:


y=mT=(x+1)ddx(x12)[(x12)ddx(x+1)](x+1)2Using Quotient Ruley=mT=(x+1)[12(x12)](x12)(1)(x+1)2Simplify the equationy=mT=x+12(x12)(x12)(x+1)2Get the LCDy=mT=x+12x2(x12)(x+1)2Combine like termsy=mT=x+12x(x+1)2mT=x+12x(x+1)2Substitute the value of xmT=4+124(4+1)2Simplify the equationmT=3100



Solving for the equation of the tangent line:


yy1=mT(xx1)Substitute the value of the slope (mT) and the given pointy0.4=3100(x4)Multiply 3100 in the equationy0.4=3x+12100Add 0.4 to each sidesy=3x+12100+0.4Simplify the equationy=3x+12+40100Combine like termsy=3x+52100Equation of the tangent line to the curve at P(4,0.4)


Solving for the equation of the normal line


mN=1mTmN=13100mN=1003yy1=mN(xx1)Substitute the value of slope (mN) and the given pointy0.4=1003(x4)Multiply 1003 to the equationy0.4=100x4003Add 0.4 to each sidesy=100x4003+0.4Simplify the equationy=100400+1.23Combine like termsy=100x398.83Equation of the normal line at P(4,0.4)

No comments:

Post a Comment