Differentiate y=t2+2t4−3t2+1
y′=(t4−3t2+1)ddx(t2+2)−[(t2+2)ddx(t4−3t2+1)](t4−3t2+1)2Apply Quotient Ruley′=(t4−3t2+1)(2t)−[(t2+2)(4t3−6t)](t4−3t2+1)2Expand the equationy′=2t5−\cancel6t3+2t−4t5+\cancel6t3−8t3+12t(t4−3t2+1)2Combine like termsy′=−2t5−8t3+14t(t4−3t2+1)2
No comments:
Post a Comment