Solve the system
$
\begin{equation}
\begin{aligned}
3x-y =& 6 \\
x+3y =& 2
\end{aligned}
\end{equation}
$
by substitution.
$
\begin{equation}
\begin{aligned}
x+3y =& 2
&& \text{Solve equation 2 for $x$}
\\
x =& 2-3y
&&
\\
3x-y =& 6
&& \text{Substitute $2-3y$ for $x$ in equation 1}
\\
3(2-3y)-y =& 6
&&
\\
6-9y-y =& 6
&&
\\
-10y =& 6-6
&&
\\
-10y =& 0
&&
\\
y =& 0
&&
\end{aligned}
\end{equation}
$
Substitute value of $y$ in equation 2
$
\begin{equation}
\begin{aligned}
x =& 2-3(0)
\\
x =& 2
\end{aligned}
\end{equation}
$
The solution is $(2,0)$.
No comments:
Post a Comment