Find the derivative of y=4√x2+1x2−1 by using logarithmic differentiation.
By taking logarithms of both sides..
lny=ln4√x2+1x2−1
If we apply the Laws of logarithm, we have
lny=14lnx2+1x2−1recall that lnxk=klnxlny=14[ln(x2+1)−ln(x2−1)]recall that lnxy=lnx−lnylny=14[ln(x2+1)−ln(x−1)(x+1)]lny=14[ln(x2+1)−(ln(x−1)+ln(x+1))]lny=14ln(x2+1)−14ln(x−1)−14ln(x+1)
By taking the derivative implicitly, we have..
ddx(y)y=14(ddx(x2+1)x2+1)−14(ddx(x−1)x−1)−14(ddx(x+1)x+1)dydxy=14(2xx2+1)−14(1x−1)−14(1x+1)dydx=y4(2xx2+1−1x−1−1x+1)dydx=4√x2+1x2−14(2xx2+1−1x−1−1x+1)
No comments:
Post a Comment