Thursday, July 26, 2018

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 62

Find the derivative of y=4x2+1x21 by using logarithmic differentiation.

By taking logarithms of both sides..

lny=ln4x2+1x21

If we apply the Laws of logarithm, we have


lny=14lnx2+1x21recall that lnxk=klnxlny=14[ln(x2+1)ln(x21)]recall that lnxy=lnxlnylny=14[ln(x2+1)ln(x1)(x+1)]lny=14[ln(x2+1)(ln(x1)+ln(x+1))]lny=14ln(x2+1)14ln(x1)14ln(x+1)


By taking the derivative implicitly, we have..


ddx(y)y=14(ddx(x2+1)x2+1)14(ddx(x1)x1)14(ddx(x+1)x+1)dydxy=14(2xx2+1)14(1x1)14(1x+1)dydx=y4(2xx2+11x11x+1)dydx=4x2+1x214(2xx2+11x11x+1)

No comments:

Post a Comment