Determine the equation of the tangent line to the curve y=x2+4xy+y2=13 at the point (2,1)
Solving for the slope of the tangent line (mT), where y′=mT
ddx(x2)+4ddx(xy)+ddx(y2)=ddx(13)ddx(x2)+4[(x)ddx(y)+(y)ddx(x)]+ddx(y2)=ddx(13)2x+4[(x)dydx+(y)(1)]+2ydydx=02x+4xdydx+4y+2ydydx=02x+4xy′+4y+2yy′=04xy′+2yy′=−2x−4yy′(4x+2y)=−2x−4yy′\cancel(4x+2y)\cancel4x+2y=−2x−4y4x+2yy′=−2x−4y4x+2y
For x=2 and y=1, we obtain
y′=mT=−2(2)−4(1)4(2)+2(1)mT=−4−48+2mT=−810mT=−45
Using point slope form
y−y1=mT(x−x1)y−1=−45(x−2)y−1=−4x+85y=−4x+85+1y=−4x+8+55y=−4x+135ory=13−4x5⟸(Equation of the tangent line at (2,1))
No comments:
Post a Comment