Friday, July 13, 2018

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 50

Determine the equation of the tangent line to the curve y=x2+4xy+y2=13 at the point (2,1)

Solving for the slope of the tangent line (mT), where y=mT


ddx(x2)+4ddx(xy)+ddx(y2)=ddx(13)ddx(x2)+4[(x)ddx(y)+(y)ddx(x)]+ddx(y2)=ddx(13)2x+4[(x)dydx+(y)(1)]+2ydydx=02x+4xdydx+4y+2ydydx=02x+4xy+4y+2yy=04xy+2yy=2x4yy(4x+2y)=2x4yy\cancel(4x+2y)\cancel4x+2y=2x4y4x+2yy=2x4y4x+2y


For x=2 and y=1, we obtain


y=mT=2(2)4(1)4(2)+2(1)mT=448+2mT=810mT=45


Using point slope form


yy1=mT(xx1)y1=45(x2)y1=4x+85y=4x+85+1y=4x+8+55y=4x+135ory=134x5(Equation of the tangent line at (2,1))

No comments:

Post a Comment