Determine the $\displaystyle \lim_{x \to \infty} \frac{(\ln x)^2}{x}$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
By applying L'Hospital's Rule...
$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{(\ln x)^2}{x} &= \lim_{x \to \infty} \frac{2(\ln x)\left( \frac{1}{x} \right)}{1}\\
\\
&= \lim_{x \to \infty} \frac{2\ln x}{x}
\end{aligned}
\end{equation}
$
If we evaluate the limit, we will still get an indeterminate form. So, by applying L'Hospital's Rule once more...
$
\begin{equation}
\begin{aligned}
\lim_{x \to \infty} \frac{2 \ln x}{x} &= \lim_{x \to \infty} \frac{2 \left( \frac{1}{x} \right)}{1}\\
\\
&= \lim_{x \to \infty} \frac{2}{x}\\
\\
&= \frac{2}{\infty}\\
\\
&= 0
\end{aligned}
\end{equation}
$
No comments:
Post a Comment