Find the 1st and 2nd derivatives of f(x)=x21+2x
f′(x)=(1+2x)ddx(x2)−[(x2)ddx(1+2x)](1+2x)2Using Quotient Rulef′(x)=(1+2x)(2x)−(x2)(2)(1+2x)2Simplify the equationf′(x)=2x+4x2−2x2(1+2x)2Combine like termsf′(x)=2x2+2x(1+2x)21st derivative of f(x)f″(x)=(1+4x+4x2)ddx(2x2+2x)−[(2x2+2x)ddx(1+4x+4x2)][(1+2x)2]2Using Quotient Rulef″(x)=(1+4x+4x2)(4x+2)−[(2x2+2x)(0+4+8x)](1+2x)4Simplify the equationf″(x)=4x+\cancel16x2+\cancel16x3+2+\cancel8x+\cancel8x2−\cancel8x2−\cancel16x3−\cancel8x−\cancel16x2(1+2x)4Combine like termsf″(x)=4x+2(1+2x)4Simplify the equationf″(x)=2\cancel(2x+1)\cancel(2x+1)(2x+1)3Factor the equationf″(x)=2(2x+1)32nd derivative of f(x)
No comments:
Post a Comment