Saturday, June 23, 2018

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 59

Find the 1st and 2nd derivatives of f(x)=x21+2x


f(x)=(1+2x)ddx(x2)[(x2)ddx(1+2x)](1+2x)2Using Quotient Rulef(x)=(1+2x)(2x)(x2)(2)(1+2x)2Simplify the equationf(x)=2x+4x22x2(1+2x)2Combine like termsf(x)=2x2+2x(1+2x)21st derivative of f(x)f(x)=(1+4x+4x2)ddx(2x2+2x)[(2x2+2x)ddx(1+4x+4x2)][(1+2x)2]2Using Quotient Rulef(x)=(1+4x+4x2)(4x+2)[(2x2+2x)(0+4+8x)](1+2x)4Simplify the equationf(x)=4x+\cancel16x2+\cancel16x3+2+\cancel8x+\cancel8x2\cancel8x2\cancel16x3\cancel8x\cancel16x2(1+2x)4Combine like termsf(x)=4x+2(1+2x)4Simplify the equationf(x)=2\cancel(2x+1)\cancel(2x+1)(2x+1)3Factor the equationf(x)=2(2x+1)32nd derivative of f(x)

No comments:

Post a Comment