Determine the functions $f \circ g, \quad g \circ f, \quad f \circ f$ and $g \circ g$ and their domains if $\displaystyle f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = x^2 - 4x$
For $f \circ g$,
$
\begin{equation}
\begin{aligned}
f \circ g &= f(g(x)) && \text{Definition of } f\circ g\\
\\
f \circ g &= \frac{1}{\sqrt{x^2 - 4x}} && \text{Definition of } f
\end{aligned}
\end{equation}
$
Since the function involves square root in the denominator, we want
$
\begin{equation}
\begin{aligned}
x^2 - 4x &> 0\\
\\
x(x-4) &> 0
\end{aligned}
\end{equation}
$
The factors on the left hand side are $x$ and $x-4$. These factors are zero when $x$ is and $4$, respectively. These numbers divide the number line into interval
$(-\infty,0), (0,4), (4, \infty)$
By testing some points on the interval...
Thus, the domain where $x(x-4) > 0$ is $(-\infty,\infty) \bigcup (4, \infty)$
For $g \circ f$,
$
\begin{equation}
\begin{aligned}
g \circ f &= g (g(x)) && \text{Definition of } g \circ f\\
\\
g \circ f &= \left( \frac{1}{\sqrt{x}} \right)^2 - 4 \left( \frac{1}{\sqrt{x}} \right) && \text{Definition of } f\\
\\
g \circ f &= \frac{1}{x} - \frac{4}{\sqrt{x}} && \text{Definition of } g
\end{aligned}
\end{equation}
$
Since the function is a rational function that invovles square root, so the domain of $g \circ f $ is $(0, \infty)$
For $f \circ f$,
$
\begin{equation}
\begin{aligned}
f \circ f &= f(f(x)) && \text{Definition of } f\circ f\\
\\
f \circ f &= \frac{1}{\sqrt{\frac{1}{\sqrt{x}}}} && \text{Definition of } f\\
\\
f \circ f &= \frac{1}{\frac{\sqrt{1}}{\sqrt{x}}} && \text{Simplify}\\
\\
f \circ f &= \sqrt[4]{x}
\end{aligned}
\end{equation}
$
We know that if the index is any even number, the radicand can't have a negative value. So the domain if $f \circ f$ is $[0, \infty)$
For $g \circ g$,
$
\begin{equation}
\begin{aligned}
g \circ g &= g(g(x)) && \text{Definition of } g \circ g\\
\\
g \circ g &= \left( x^2 - 4x \right)^2 -4 \left( x^2 - 4x \right) && \text{Definition of } g \\
\\
g \circ g &= x^4 - 8x^3 + 16x^2 - 4x^2 + 16x && \text{Simplify}\\
\\
g \circ g &= x^4 - 8x^3 + 12x^2 + 16x && \text{Definition of } g
\end{aligned}
\end{equation}
$
The domain of $g \circ g$ is $(-\infty,\infty)$
No comments:
Post a Comment