If $12ft-lb$ is the required work to stretch a spring $1$ ft beyond its natural length, how much work is needed to sketch $9$ inches beyond its vertical length?
Recall from Hooke's Law,
$f(x) = kx$ where $x$ is the maximum elongated length of the spring and $k$ is the spring constant
$
\begin{equation}
\begin{aligned}
& W = \int^b_a f(x) dx
\\
\\
& W = \int^b_a kx dx
\\
\\
& W = \int^1_0 kxdx \quad \text{; recall that 9 inches } \left(\frac{1\text{ft}}{12 \text{inches}}\right)\\
\\
\\
& 12 = k \left[ \frac{x^2}{2} \right]^1_0
\\
\\
& 12 = k \left( \left[ \frac{(1)^2}{2} \right] - \left[ \frac{(0)^2}{2} \right] \right)
\\
\\
& 12 = k \left( \frac{1}{2} \right)
\\
\\
& k = 24 \frac{lb}{ft}
\end{aligned}
\end{equation}
$
Therefore, the required work to stretch the string to $9$ inches is...
$
\begin{equation}
\begin{aligned}
W =& \int^{\frac{3}{4}}_0 kx dx; \text{ recall that } 9 \text{ inches }\left( \frac{1 \text{ft}}{12 \text{inches}} \right) = \frac{3}{4} ft
\\
\\
W =& \int^{\frac{3}{4}}_0 24x dx
\\
\\
W =& \frac{27}{4} ft -lb
\end{aligned}
\end{equation}
$
No comments:
Post a Comment