Sunday, May 27, 2018

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 3

Determine the limx2(3x4+2x2x+1) and justify each step by indicating the appropriate limit law(s).


limx2(3x4+2x2x+1)=limx23x4+limx22x2limx2x+limx21(Sum and difference Law)limx2(3x4+2x2x+1)=3limx2x4+2limx2x2limx2x+limx21(Constant Multiple Law)limx2(3x4+2x2x+1)=3limx2x4+2limx2x2limx2x+1(Special Limit, Constant Multiple Law.)limx2(3x4+2x2x+1)=3(2)4+2(2)2(2)+1(Power Special Limit)limx2(3x4+2x2x+1)=59

No comments:

Post a Comment