Determine the limx→−2(3x4+2x2−x+1) and justify each step by indicating the appropriate limit law(s).
limx→−2(3x4+2x2−x+1)=limx→−23x4+limx→−22x2−limx→−2x+limx→−21(Sum and difference Law)limx→−2(3x4+2x2−x+1)=3limx→−2x4+2limx→−2x2−limx→−2x+limx→−21(Constant Multiple Law)limx→−2(3x4+2x2−x+1)=3limx→−2x4+2limx→−2x2−limx→−2x+1(Special Limit, Constant Multiple Law.)limx→−2(3x4+2x2−x+1)=3(−2)4+2(−2)2−(−2)+1(Power Special Limit)limx→−2(3x4+2x2−x+1)=59
No comments:
Post a Comment