This function is odd, thus its Fourier expansions contains only sin(nx) terms, i.e. a_n=0, ngt=0. This expansion has the form sum_(n=1)^(oo) b_n sin(nx) where b_n = 1/pi int_(-pi)^(pi) f(x) sin(nx) dx.
Find these coefficients:
b_n = 1/pi int_(-pi)^(pi) f(x) sin(nx) dx = 2/pi int_0^(pi) f(x) sin(nx) dx =
= 2/pi int_0^(pi/2) f(x) sin(nx) dx + 2/piint_(pi/2)^(pi) f(x) sin(nx) dx) =
= 2/pi int_0^(pi/2) x sin(nx) dx + 2/piint_(pi/2)^(pi) pi/2 sin(nx) dx.
The second integral is obviously
-(cos(nx))|_(x=pi/2)^pi = -1/n (cos(n pi)-cos((n pi)/2)).
To find the second, use integration by parts:
2/pi int_0^(pi/2) x sin(nx) dx =
= |u=x, du=dx, dv=sin(nx)dx, v=-1/n cos(nx)| =
= -2/(n pi) (x cos(nx))|_(x=0)^(pi/2) + 2/(n pi) int_0^(pi/2) cos(nx) dx =
= -1/n cos((n pi)/2) + 2/(n^2 pi) (sin(nx))|_(x=0)^(pi/2) =
= 2/(n^2 pi)sin((n pi)/2)-1/n cos((n pi)/2).
This way b_n =2/(n^2 pi)sin((n pi)/2)-1/n cos(n pi). Therefore b_1=1+2/pi, b_3=1/3 -2/(9 pi), b_5=1/5+2/(25 pi).
The graphs are attached (the function is in blue, the approximation is in green). They are not so close but are somewhat similar. Note that on (-4pi,4pi) the function is 2pi -periodic.
http://tutorial.math.lamar.edu/Classes/DE/FourierSineSeries.aspx
No comments:
Post a Comment