Find y′ of y=sin2(cos√sin′pix)
y′=ddx[sin2(cos√sin′pix)]y′=ddx[sin2(cos√sin′pix)]2y′=2sin(cos√sinπx)ddx[sin(cos√sinπx)]y′=2sin(cos√sinπx)⋅(cos√sinπx)ddx(cos√sinπx)y′=2sin(cos√sinπx)⋅(cos√sinπx)⋅(−sin√sinπx)ddx(√sinπx)y′=2sin(cos√sinπx)⋅(cos√sinπx)⋅(−sin√sinπx)ddx(sinπx)12y′=2sin(cos√sinπx)⋅(cos√sinπx)⋅(−sin√sinπx)⋅(12)(sinπx)−12ddx(sinπx)y′=2sin(cos√sinπx)⋅(cos√sinπx)⋅(−sin√sinπx)⋅(12)(sinπx)−12⋅(cosπx)ddx(πx)y′=\cancel2sin(cos√sinπx)⋅(cos√sinπx)⋅(−sin√sinπx)⋅(1\cancel2)(sinπx)−12⋅(cosπx)(π)y′=−πsin(cos√sinπx)cos(cos√sinπx)sin√sinπxcosπx(sinπx)12ory′=−πsin(cos√sinπx)cos(cos√sinπx)sin√sinπxcosπx√sinπx
No comments:
Post a Comment