Friday, April 27, 2018

Single Variable Calculus, Chapter 3, Review Exercises, Section Review Exercises, Problem 40

Find y of y=sin2(cossinpix)


y=ddx[sin2(cossinpix)]y=ddx[sin2(cossinpix)]2y=2sin(cossinπx)ddx[sin(cossinπx)]y=2sin(cossinπx)(cossinπx)ddx(cossinπx)y=2sin(cossinπx)(cossinπx)(sinsinπx)ddx(sinπx)y=2sin(cossinπx)(cossinπx)(sinsinπx)ddx(sinπx)12y=2sin(cossinπx)(cossinπx)(sinsinπx)(12)(sinπx)12ddx(sinπx)y=2sin(cossinπx)(cossinπx)(sinsinπx)(12)(sinπx)12(cosπx)ddx(πx)y=\cancel2sin(cossinπx)(cossinπx)(sinsinπx)(1\cancel2)(sinπx)12(cosπx)(π)y=πsin(cossinπx)cos(cossinπx)sinsinπxcosπx(sinπx)12ory=πsin(cossinπx)cos(cossinπx)sinsinπxcosπxsinπx

No comments:

Post a Comment