Monday, March 26, 2018

Single Variable Calculus, Chapter 8, 8.2, Section 8.2, Problem 46

Determine the integral cosx+sinxsin2xdx

cosx+sinxsin2xdx=cosx+sinx2sinxcosxdxApply Trigonometric Identity sin2x=2sinxcosxcosx+sinxsin2xdx=(\cancelcosx2sinx\cancelcosx+\cancelsinx2\cancelsinxcosx)dxcosx+sinxsin2xdx=(12sinx+12cosx)dxcosx+sinxsin2xdx=(12cscx+12secx)dxcosx+sinxsin2xdx=12[ln(cscx+cotx)+ln(secx+tanx)]+c or cosx+sinxsin2xdx=12[ln(secx+tanx)ln(cscx+cotx)]+c

No comments:

Post a Comment