Determine the integral ∫cosx+sinxsin2xdx
∫cosx+sinxsin2xdx=∫cosx+sinx2sinxcosxdxApply Trigonometric Identity sin2x=2sinxcosx∫cosx+sinxsin2xdx=∫(\cancelcosx2sinx\cancelcosx+\cancelsinx2\cancelsinxcosx)dx∫cosx+sinxsin2xdx=∫(12sinx+12cosx)dx∫cosx+sinxsin2xdx=∫(12cscx+12secx)dx∫cosx+sinxsin2xdx=12[−ln(cscx+cotx)+ln(secx+tanx)]+c or ∫cosx+sinxsin2xdx=12[ln(secx+tanx)−ln(cscx+cotx)]+c
No comments:
Post a Comment