Find the intergral ∫20y2√1+y3dy, if it exists.
If we let u=1+y3, then du=3y2dy, so y2dy=du3, when y=0, u=1 and when y=2, u=9. Therefore,
=∫20y2√1+y3dy
Make sure tha the upper and lower limits are also in terms of u, so...
=∫1+231+03√u(du3)=13∫91√udu=13[u12+112+1]91=13[u3232]91=13[u32]91=29[932−132]=29[27−1]=529
No comments:
Post a Comment