Find the derivative of the function y=(lnx)cosx, using log differentiation
lny=ln(lnx)cosxlny=cosxlnlnxddxlny=ddx(cosxlnlnx)1ydydx=cosxddx(lnlnx)+(lnlnx)ddx(cosx)1yy′=cosx⋅1lnxddx(lnx)+(lnlnx)(−sinx)y′y=cosxlnx⋅1x−sinxln(lnx)y′=y[cosxxlnx−sinxln(lnx)]y′=(lnx)cosx[cosxxlnx−sinxln(lnx)]
No comments:
Post a Comment