Find the integrals ∫10(1+x2)3dx
∫(1+x2)3dx=∫(1+3x2+3x4+x6)dx∫(1+x2)3dx=∫1dx+3∫x2dx+∫x4dx+∫x6dx∫(1+x2)3dx=1(x0+10+1)+3(x2+12+1)+3(x4+14+1)+(x6+16+1)+C∫(1+x2)3dx=x+\cancel3x3\cancel3+3x55+x77+C∫(1+x2)3dx=x+x3+3x55+x7x7+C∫10(1+x2)3dx=1+(1)3+3(1)55+(1)77+C−[0+(0)3+3(0)55+(0)75+C]∫10(1+x2)3dx=1+1+35+17+C−0−0−0−0−C∫10(1+x2)3dx=35+35+21+535∫10(1+x2)3dx=9635
No comments:
Post a Comment