Tuesday, February 20, 2018

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 38

Find the integrals 10(1+x2)3dx

(1+x2)3dx=(1+3x2+3x4+x6)dx(1+x2)3dx=1dx+3x2dx+x4dx+x6dx(1+x2)3dx=1(x0+10+1)+3(x2+12+1)+3(x4+14+1)+(x6+16+1)+C(1+x2)3dx=x+\cancel3x3\cancel3+3x55+x77+C(1+x2)3dx=x+x3+3x55+x7x7+C10(1+x2)3dx=1+(1)3+3(1)55+(1)77+C[0+(0)3+3(0)55+(0)75+C]10(1+x2)3dx=1+1+35+17+C0000C10(1+x2)3dx=35+35+21+53510(1+x2)3dx=9635

No comments:

Post a Comment