Thursday, February 22, 2018

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 68

Let P(x)=F(x)G(x) and Q(x)=F(x)G(x), where F and G are the functions whose are shown
a.) Find P(2) b.) Find Q(7)




a.) P(2)=F(2)[G(2)]+F(2)[G(2)]
Referring to the given graph

F(2)=3,F(2)=0,G(2)=2,G(2)=12P(2)=0(2)+3(12)P(2)=32


b.) Q(7)=G(7)[F(7)][F(7)]G(7)[G(7)]2
Referring to the graph given,

F(7)=5,F(7)=14,G(7)=1,G(7)=23Q(7)=1(14)5(23)(1)2Q(7)=4312

No comments:

Post a Comment