Find the integral $\displaystyle \int^3_1 \left( 1 + 2x - 4 x^3 \right) dx$
$
\begin{equation}
\begin{aligned}
\int \left( 1 + 2x - 4 x^3 \right) dx &= \int 1 dx + 2 \int x dx - 4 \int x^3 dx\\
\\
\int \left( 1 + 2x - 4 x^3 \right) dx &= x + 2 \left( \frac{x^{1+1}}{1+1} \right) - 4 \left( \frac{x^{3+1}}{3+1} \right) + C\\
\\
\int \left( 1 + 2x - 4 x^3 \right) dx &= x + \frac{\cancel{2}x^2}{\cancel{2}} - \frac{\cancel{4}x^4}{\cancel{4}} + C\\
\\
\int \left( 1 + 2x - 4 x^3 \right) dx &= x + x^2 - x^4 + C
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\int^3_1 \left( 1 + 2x - 4 x^3 \right) dx &= 3 + (3)^2 - (3)^4 + C - \left[ 1 + (1)^2 - (1)^4 + C \right]\\
\\
\int^3_1 \left( 1 + 2x - 4 x^3 \right) dx &= 3 + 9 - 81 + C - 1 - 1 + 1 - C\\
\\
\int^3_1 \left( 1 + 2x - 4 x^3 \right) dx &= - 70
\end{aligned}
\end{equation}
$
No comments:
Post a Comment