Tuesday, January 16, 2018

Single Variable Calculus, Chapter 5, 5.4, Section 5.4, Problem 20

Find the integral 31(1+2x4x3)dx

(1+2x4x3)dx=1dx+2xdx4x3dx(1+2x4x3)dx=x+2(x1+11+1)4(x3+13+1)+C(1+2x4x3)dx=x+\cancel2x2\cancel2\cancel4x4\cancel4+C(1+2x4x3)dx=x+x2x4+C


31(1+2x4x3)dx=3+(3)2(3)4+C[1+(1)2(1)4+C]31(1+2x4x3)dx=3+981+C11+1C31(1+2x4x3)dx=70

No comments:

Post a Comment