Wednesday, January 31, 2018

Single Variable Calculus, Chapter 3, 3.1, Section 3.1, Problem 8

Determine the equation of the tangent line to the curve y=2x(x+1)2 at the point (0, 0)

Using the definition (Slope of the tangent line)

m=limxaf(x)f(a)xa

We have a=0 and f(x)=2x(x+1)2, so the slope is


m=limx0f(x)f(0)x0m=limx02x(x+1)2[2(0)(0+1)2]xSubstitute value of a and xm=limx02\cancelx\cancelx(x+1)2Cancel out like termsm=limx02(x+1)2=2(0+1)2Evaluate the limitm=2


Using point slope form


yy1=m(xx1)y0=2(x0) Substitute value of x,y and m and simplifyy=2x



Therefore,
The equation of the tangent line at (0,0) is y=2x.

No comments:

Post a Comment

Why is the fact that the Americans are helping the Russians important?

In the late author Tom Clancy’s first novel, The Hunt for Red October, the assistance rendered to the Russians by the United States is impor...