Wednesday, January 24, 2018

Calculus and Its Applications, Chapter 1, 1.8, Section 1.8, Problem 28

Determine the y of the function y=(x4+x)23
By using Chain Rule,

y=ddx[(x4+x)23]=23(x4+x)231ddx(x4+x)=23(x4+x)13(4x3+1)=2(4x3+1)3(x4+x)13


Then, by using Quotient Rule and Chain Rule

y=23ddx[4x3+1(x4+x)13]=23[(x4+x)13ddx(4x3+1)(4x3+1)ddx[(x4+x)13][(x4+x)13]2]=23[(x4+x)13(12x2)(4x3+1)[12(x4+x)23(4x3+1)][(x4+x)13]2]=23[(x4+x)(12x2)(4x3+1)22(x4+x)23(x4+x)23]=23[2(12x2)(x4+x)53(4x3+1)22(x4+x)23(x4+x)23]=13[24x2(x4+x)53(4x3+1)2(x4+x)43]

No comments:

Post a Comment