Determine the y′ of the function y=(x4+x)23
By using Chain Rule,
y′=ddx[(x4+x)23]=23(x4+x)23−1⋅ddx(x4+x)=23(x4+x)−13(4x3+1)=2(4x3+1)3(x4+x)13
Then, by using Quotient Rule and Chain Rule
y″=23⋅ddx[4x3+1(x4+x)13]=23[(x4+x)13⋅ddx(4x3+1)−(4x3+1)⋅ddx[(x4+x)13][(x4+x)13]2]=23[(x4+x)13(12x2)−(4x3+1)[12(x4+x)−23(4x3+1)][(x4+x)13]2]=23[(x4+x)(12x2)−(4x3+1)22(x4+x)23(x4+x)23]=23[2(12x2)(x4+x)53−(4x3+1)22(x4+x)23(x4+x)23]=13[24x2(x4+x)53−(4x3+1)2(x4+x)43]
No comments:
Post a Comment