Thursday, December 14, 2017

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 78

If f(x)=x2, x>0, f(1)=0 and f(2)=0, find f

If f(x)=x2, then by applying integration...


f(x)=x2dx=x11+c1=1x+c1



Again, by applying integration...


f(x)=(1x+c1)dxf(x)=lnx+c1x+c2


If f(1)=0, then


0=ln(1)+c1(1)+c20=c1+c2c1=c2(Equation 1)



Also, if f(2)=0, then



0=ln(2)+c1(2)+c2ln(2)=2c1+c2(Equation 2)



By using Equations 1 and 2 simultaneously...



ln(2)=2c1c1c1=ln2



Thus, c2=ln2

Therefore,

f(x)=lnx+xln(2)ln(2)

No comments:

Post a Comment