Determine the limits that exist. If the limits does not exist, explain why. Given that
limx→2f(x)=4limx→2g(x)=−2limx→2h(x)=0
(a) limx→2[f(x)+5g(x)](b) limx→2[g(x)]3(c) limx→2√f(x)(d) limx→23f(x)g(x)(e) limx→2g(x)h(x)(f) limx→2g(x)h(x)f(x)
a.) limx→2[f(x)+5g(x)]
limx→2[f(x)+5g(x)]=limx→2f(x)+limx→25g(x)(Substitute the given values.)limx→2[f(x)+5g(x)]=4+5(−2)(Simplify.)limx→2[f(x)+5g(x)]=−6
b.)limx→2[g(x)]3
limx→2[g(x)]3(Substitute the given value.)limx→2[g(x)]3=(−2)3(Simplify)limx→2[g(x)]3=−8
c.) limx→2√f(x)
limx→2√f(x)(Substitute the given value)limx→2√f(x)=√4(Simplify)limx→2√f(x)=2
d.) limx→23f(x)g(x)
limx→23f(x)g(x)(Substitute the given values)limx→23f(x)g(x)=3(4)−2(Simplify)limx→23f(x)g(x)=−6
e.) limx→2g(x)h(x)
limx→2g(x)h(x)(Substitute the given values)limx→2g(x)h(x)=−20Limit does not exist, the function is undefined because denominator is zero.
f.) limx→2g(x)h(x)f(x)
limx→2g(x)h(x)f(x)(Substitute the given values)limx→2g(x)h(x)f(x)=(−2)(0)4(Simplify)limx→2g(x)h(x)f(x)=0
No comments:
Post a Comment