Thursday, December 28, 2017

Single Variable Calculus, Chapter 2, 2.3, Section 2.3, Problem 1

Determine the limits that exist. If the limits does not exist, explain why. Given that
limx2f(x)=4limx2g(x)=2limx2h(x)=0


(a) limx2[f(x)+5g(x)](b) limx2[g(x)]3(c) limx2f(x)(d) limx23f(x)g(x)(e) limx2g(x)h(x)(f) limx2g(x)h(x)f(x)



a.) limx2[f(x)+5g(x)]

limx2[f(x)+5g(x)]=limx2f(x)+limx25g(x)(Substitute the given values.)limx2[f(x)+5g(x)]=4+5(2)(Simplify.)limx2[f(x)+5g(x)]=6


b.)limx2[g(x)]3

limx2[g(x)]3(Substitute the given value.)limx2[g(x)]3=(2)3(Simplify)limx2[g(x)]3=8


c.) limx2f(x)

limx2f(x)(Substitute the given value)limx2f(x)=4(Simplify)limx2f(x)=2


d.) limx23f(x)g(x)

limx23f(x)g(x)(Substitute the given values)limx23f(x)g(x)=3(4)2(Simplify)limx23f(x)g(x)=6


e.) limx2g(x)h(x)

limx2g(x)h(x)(Substitute the given values)limx2g(x)h(x)=20Limit does not exist, the function is undefined because denominator is zero.


f.) limx2g(x)h(x)f(x)

limx2g(x)h(x)f(x)(Substitute the given values)limx2g(x)h(x)f(x)=(2)(0)4(Simplify)limx2g(x)h(x)f(x)=0

No comments:

Post a Comment