Differentiate F(x)=(−3x2+4x)(7√x+1)
By multiplying first before differentiating we get
F(x)=(−3x2+4x)(7x12+1)F(x)=−21x52−3x2+28x32+4x
Thus,
F′(x)=ddx(−21x52−3x2+28x32+4x)=−21⋅ddx(x52)−3⋅ddx(x2)+28⋅ddx(x32)+4⋅ddx(x)=−21⋅52(x52−1)−3⋅2(x2−1)+28⋅32(x32−1)+4⋅(1)=−1052x32−6x+42x12+4=−1052√x3−6x+42√x+4
No comments:
Post a Comment