Sunday, December 31, 2017

Calculus and Its Applications, Chapter 1, 1.6, Section 1.6, Problem 26

Differentiate F(x)=(3x2+4x)(7x+1)
By multiplying first before differentiating we get

F(x)=(3x2+4x)(7x12+1)F(x)=21x523x2+28x32+4x


Thus,

F(x)=ddx(21x523x2+28x32+4x)=21ddx(x52)3ddx(x2)+28ddx(x32)+4ddx(x)=2152(x521)32(x21)+2832(x321)+4(1)=1052x326x+42x12+4=1052x36x+42x+4

No comments:

Post a Comment