When the warmer objects (pieces of iron and copper) are placed in contact with the colder object (water), there will be a transfer of heat so that the iron and copper will cool off and the water will heat up.
According to the law of the conservation of energy,
Q_(hot) + Q_(cold) = 0 .
Here,
Q_(hot) is the heat leaving the warmer objects (it will have a negative value), and
Q_(cold) is the heat acquired by the colder object as the result.
In this case,
Q_(hot) = c_im_i(T_e - T_(ii)) + c_cm_c(T_e-T_(ic))
and Q_(cold) = c_wm_w(T_e-T_(iw))
Here, c's denote the specific heat of iron, copper and water, m's denote the masses and T_i
- initial temperature of the objects.
T_e
is the equilibrium temperature.
Plugging in the values for given quantities (masses are in kilograms), and the table values for specific heat (in J/(kg*C)), we get
448*m_i*(40-215) + 387*20*(40-140) + 4186*25*(40-10) = 0
From here,
-78400*m_i - 774000+3139500 = 0
Solving for the mass of iron results in
m_i = 30.17 kg
The mass of iron is 30.17 kilograms.
http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/calor.html
https://www.physicsclassroom.com/class/thermalP/Lesson-2/Calorimeters-and-Calorimetry
No comments:
Post a Comment