Find the area bounded by the curves y=5lnx, y=xlnx
First, we need to get the upper and lower limits of the integral by simply getting the points of intersections of the curves. So,
5lnx=xlnx5lnx=xlnx=0lnx(5−x)=0
We have,
lnx=0 and 5−x=0
Solving for x
elnx=e0
x=1 and x=5
Then, by using vertical strips
A=∫ba(yupper−ylower)dxA=∫51(5lnx−xlnx)dxA=∫51lnx(5−x)dx
To evaluate the area, we must use integration by parts, so
If we let u=lnx and dv=(5−x)dx. Then,
du=1xdx and v=5x−x22
So,
A=∫51lnx(5−x)dx=uv−∫vdu=(lnx)(5x−x22)∫(5x−x22)(1x)dx=lnx(5x−x22)−∫(5−x2)dx=lnx(5x−x22)−(5x−x22(12))
Evaluate from x=1 to x=5, we have...
A=252ln5−14 square units
No comments:
Post a Comment