Find the area bounded by the curves $y = 5 \ln x$, $y = x \ln x$       
	
    
    
    First, we need to get the upper and lower limits of the integral by simply getting the points of intersections of the curves. So,
	
	$
	\begin{equation}
	\begin{aligned}
		5 \ln x &= x \ln x\\
        \\
        5 \ln x &= x \ln x = 0\\
        \\
        \ln x( 5- x ) &= 0
	\end{aligned}
	\end{equation}
	$
	
	We have,
	$\ln x = 0$ and $ 5- x = 0$
	Solving for $x$
	$e^{\ln x} = e^0$
	$x =1$ and $x =5$
	Then, by using vertical strips
	
	$
	\begin{equation}
	\begin{aligned}
		A &= \int^b_a \left( y_{\text{upper}} - y_{\text{lower}} \right) dx\\
        \\
        A &= \int^5_1 (5 \ln x - x \ln x ) dx\\
        \\
        A &= \int^5_1 \ln x (5 -x ) dx
	\end{aligned}
	\end{equation}
	$
	
    
   	To evaluate the area, we must use integration by parts, so
   	If we let $u = \ln x$ and $dv = (5 -x) dx$. Then,
    $\displaystyle du = \frac{1}{x} dx \text{ and } v = 5x - \frac{x^2}{2}$
    
    So,
	
	$
	\begin{equation}
	\begin{aligned}
		A = \int^5_1 \ln x (5-x) dx &= uv - \int v du = (\ln x) \left( 5x - \frac{x^2}{2} \right) \int \left( 5x - \frac{x^2}{2} \right) \left( \frac{1}{x} \right) dx\\
        \\
        &= \ln x \left( 5x - \frac{x^2}{2} \right) - \int \left( 5 - \frac{x}{2} \right) dx\\
        \\
        &= \ln x \left( 5x - \frac{x^2}{2} \right) - \left(5x - \frac{x^2}{2} \left( \frac{1}{2} \right) \right)
	\end{aligned}
	\end{equation}
	$
	    
    
    Evaluate from $x = 1$ to $x = 5$, we have...
    $\displaystyle A = \frac{25}{2} \ln 5 - 14$ square units
No comments:
Post a Comment