Friday, October 20, 2017

Single Variable Calculus, Chapter 7, 7.8, Section 7.8, Problem 42

Determine the limx0+sinxlnx. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
limx0+sinxlnx=limx0+lnxcscx


By applying L'Hospital's Rule...

limx0+lnxcscx=limx0+1xcscxcotx=limx0+(1x)1sinx(cosxsinx)=limx0+sin2xxcosx


We can rewrite the limit as...

limx0+sin2xxcosx=limx0+(sinxxsinxcosx)=[limx0+sinxxlimx0+tanx]Recall that limx0+sinxx=1 ,so...=[1limx0+tanx]=[10]=0

No comments:

Post a Comment