Determine the $\displaystyle \lim_{x \to 0^+} \sin x \ln x$. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.      
  $\displaystyle \lim_{x \to 0^+} \sin x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\csc x} $
   
  
  By applying L'Hospital's Rule...  
	
	$
	\begin{equation}
	\begin{aligned}
		\lim_{x \to 0^+} \frac{\ln x}{\csc x} &= \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\csc x \cot x} \\
        \\
        &= \lim_{x \to 0^+} \frac{\left( \frac{1}{x} \right)}{-\frac{1}{\sin x} \left( \frac{\cos x}{\sin x} \right)}\\
        \\
        &= \lim_{x \to 0^+} \frac{- \sin^2 x}{x \cos x}
	\end{aligned}
	\end{equation}
	$
	    
    
    We can rewrite the limit as...
	
	$
	\begin{equation}
	\begin{aligned}
		\lim_{x \to 0^+} \frac{-\sin^2x}{x \cos x} &= - \lim_{x \to 0^+} \left( \frac{\sin x}{x} \cdot \frac{\sin x}{\cos x} \right)\\
        \\
        &= - \left[ \lim_{x \to 0^+} \frac{\sin x}{x} \cdot \lim_{x \to 0^+} \tan x \right]\\
        \\
        \text{Recall that } \lim_{x \to 0^+} \frac{\sin x}{x} &= 1 \text{ ,so...}\\
        \\
        &= - \left[1 \cdot \lim_{x \to 0^+} \tan x \right]\\
        \\
        &= -[1 \cdot 0]\\
        \\
        &= 0
	\end{aligned}
	\end{equation}
	$
No comments:
Post a Comment