Determine the limx→0+sinxlnx. Use L'Hospital's Rule where appropriate. Use some Elementary method if posible. If L'Hospitals Rule doesn't apply. Explain why.
limx→0+sinxlnx=limx→0+lnxcscx
By applying L'Hospital's Rule...
limx→0+lnxcscx=limx→0+1x−cscxcotx=limx→0+(1x)−1sinx(cosxsinx)=limx→0+−sin2xxcosx
We can rewrite the limit as...
limx→0+−sin2xxcosx=−limx→0+(sinxx⋅sinxcosx)=−[limx→0+sinxx⋅limx→0+tanx]Recall that limx→0+sinxx=1 ,so...=−[1⋅limx→0+tanx]=−[1⋅0]=0
No comments:
Post a Comment