How fast is the base of the triangle changing when the altitude is 10cm and the area is 100cm$^2$
Illustration
Given:
$\qquad \displaystyle \frac{dh}{dt} = 1 cm/min$
$\qquad \frac{dA}{dt} = 2 cm^2 /min$
Required: $\displaystyle \frac{db}{dt}$ when $h = 10 cm$ and $A = 100cm^2$
Solution:
$
\begin{equation}
\begin{aligned}
A =& \frac{1}{2} bh,
&&\text{area of triangle}
\\
\\
\frac{dA}{dt} =& \frac{1}{2} \left[ b \frac{dh}{dt} + h \frac{db}{dt} \right]
&& \text{(Derivative with respect to time)}
\\
\\
\frac{db}{dt} =& \frac{\displaystyle 2 \frac{dA}{dt} - b \frac{dh}{dt}}{h}
\end{aligned}
\end{equation}
$
To get the value of $b$, we will use the formula of area of triangle
$
\begin{equation}
\begin{aligned}
A =& \frac{1}{2} bh
\\
\\
b =& \frac{2A}{h} = \frac{2(100)}{10} = 20 cm
\end{aligned}
\end{equation}
$
To solve for the unknown,
$
\begin{equation}
\begin{aligned}
& \frac{db}{dt} = \frac{2(2) - 20(1)}{10}
\\
\\
&\boxed{ \displaystyle \frac{db}{dt} = -1.6 cm /min}
\qquad \text{(It means that the rate is decreasing)}
\end{aligned}
\end{equation}
$
The length of the shadow is decreasing at a rate of $0.6 m/s$ when the man is $4m$ from the building.
No comments:
Post a Comment