Saturday, October 28, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 25

Differentiate F(y)=(1y23y4)(y+5y3)



F(y)=(1y23y4)(y+5y3)Expand the equationF(y)=(yy23yy4+5y3y215y3y4)Reduce to lowest termF(y)=1y3y3+5y15y=y13y3+5y15y1Combine like termsF(y)=3y3+5y14y1Apply Power RuleF(y)=3ddy(y3)+5ddy(y)14ddy(y1)F(y)=(3)(3y4)+(5)(1)(14)(y2)Simplify the equationF(y)=9y4+5+14y2

No comments:

Post a Comment