Differentiate F(y)=(1y2−3y4)(y+5y3)
F(y)=(1y2−3y4)(y+5y3)Expand the equationF(y)=(yy2−3yy4+5y3y2−15y3y4)Reduce to lowest termF(y)=1y−3y3+5y−15y=y−1−3y−3+5y−15y−1Combine like termsF(y)=−3y−3+5y−14y−1Apply Power RuleF′(y)=−3ddy(y−3)+5ddy(y)−14ddy(y−1)F′(y)=(−3)(−3y−4)+(5)(1)−(14)(−y−2)Simplify the equationF′(y)=9y−4+5+14y−2
No comments:
Post a Comment