Suppose f and g are continuous functions with f(3)=5 and lim , find g(3)
Based from the theorem, if f is continuous at number a
\lim \limits_{x \to a} f(x) = f(a)
\begin{equation} \begin{aligned} & \text{Therefore}\\ & \phantom{x} & & \lim \limits_{x \to 3} f(x) = f(3) = 5\\ & \phantom{x} & & \lim \limits_{x \to 3} [2f(x) - g(x)] = 4\\ & \phantom{x} & & 2 \lim \limits_{x \to 3} f(x) - \lim \limits_{x \to 3} g(x) = 4\\ & \phantom{x} & & \lim \limits_{x \to 3} g(x) = 2(5) - 4 = 10 - 4 = 6\\ & \text{Again, from the definition}\\ & \phantom{x} & & \lim \limits_{x \to 3} g(x) = g(3) = 6\\ & \text{Hence, }\\ & \phantom{x}& & g(3) = 6 \end{aligned} \end{equation}
No comments:
Post a Comment