Friday, October 27, 2017

Calculus and Its Applications, Chapter 1, 1.7, Section 1.7, Problem 48

Determine dydu,dudx and dydx if y=u+1u1 and u=1+x.

We first find dydu and dudx.



dydu=(u1)ddu(u+1)(u+1)ddu(u1)(u1)2 and dudx=ddx(1)+ddx(x)12=(u1)(1)(u+1)(1)(u1)2=0+12(x)12=u1u1(u1)2=12x=2(u1)2


Then,


dydx=dydududx=2(u1)212x=22(u1)2x=1(1+x1)2xSubstitute 1+x for u=1(x)2x=1xx

No comments:

Post a Comment