Determine dydu,dudx and dydx if y=u+1u−1 and u=1+√x.
We first find dydu and dudx.
dydu=(u−1)⋅ddu(u+1)−(u+1)⋅ddu(u−1)(u−1)2 and dudx=ddx(1)+ddx(x)12=(u−1)(1)−(u+1)(1)(u−1)2=0+12(x)−12=u−1−u−1(u−1)2=12√x=−2(u−1)2
Then,
dydx=dydu⋅dudx=−2(u−1)2⋅12√x=−22(u−1)2√x=−1(1+√x−1)2√xSubstitute 1+√x for u=−1(√x)2√x=−1x√x
No comments:
Post a Comment