Determine $\displaystyle \frac{dy}{du}, \frac{du}{dx}$ and $\displaystyle \frac{dy}{dx}$ if $\displaystyle y = \frac{u+1}{u-1}$ and $u = 1 + \sqrt{x}$.
We first find $\displaystyle \frac{dy}{du}$ and $\displaystyle \frac{du}{dx}$.
$
\begin{equation}
\begin{aligned}
\frac{dy}{du} =& \frac{\displaystyle (u-1) \cdot \frac{d}{du} (u+1) - (u+1) \cdot
\frac{d}{du} (u-1)}{(u-1)^2} \qquad \text{ and } &&& \frac{du}{dx} =& \frac
{d}{dx} (1) + \frac{d}{dx} (x)^{\frac{1}{2}}
\\
\\
=& \frac{(u-1) (1) - (u + 1)(1)}{(u - 1)^2} &&& =& 0 + \frac{1}{2} (x)^{\frac{-1}{2}}
\\
\\
=& \frac{u-1-u-1}{(u-1)^2} &&& =& \frac{1}{2 \sqrt{x}}
\\
\\
=& \frac{-2}{(u-1)^2}
\end{aligned}
\end{equation}
$
Then,
$
\begin{equation}
\begin{aligned}
\frac{dy}{dx} =& \frac{dy}{du} \cdot \frac{du}{dx}
\\
\\
=& \frac{-2}{(u-1)^2} \cdot \frac{1}{2 \sqrt{x}}
\\
\\
=& \frac{-2}{2(u - 1)^2 \sqrt{x}}
\\
\\
=& \frac{-1}{(1 + \sqrt{x} - 1)^2 \sqrt{x}}
\qquad \text{Substitute $1 + \sqrt{x}$ for $u$}
\\
\\
=& \frac{-1}{(\sqrt{x})^2 \sqrt{x}}
\\
\\
=& \frac{-1}{x \sqrt{x}}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment