Sunday, September 24, 2017

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 50

Determine the absolute maximum and absolute minimum values of f(x)=(x21)3 on the interval [1,2].

Taking the derivative of f(x)

f(x)=3(x21)2(2x)f(x)=6x(x21)2

Solving for critical numbers, when f(x)=0
0=6x(x21)2

Hence,

x=0 and (x21)=0x=0 and x=±1



We have either absolute maximum and minimum values at x=0 and x=±1
So,

when x=0f(0)=(021)3f(0)=1when x=1f(1)=(121)3f(1)=0when x=1f(1)=((1)21)3f(1)=0

Evaluating f(x) at end points x=1 and x=2

when x=1f(1)=((1)21)3f(1)=0when x=2f(4)=((2)21)3f(4)=27

Therefore, we have absolute maximum value at f(2)=27 and the absolute minimum value at f(0)=1 on the interval [1,2]

No comments:

Post a Comment