Determine the absolute maximum and absolute minimum values of f(x)=x2−4x2+4 on the interval [−4,4].
Taking the derivative of f(x) using Quotient Rule we have,
f′(x)=(x2+4)(2x)−(x2−4)(2x)(x2+4)2f′(x)=\cancel2x3+8x−\cancel2x3+8x(x2+4)2f′(x)=16x(x2+4)2
Solving for critical numbers, when f′(x)=0
0=16x(x2+4)20=16xx=0
We have either absolute maximum and minimum values at x=0
So,
f(0)=02−402+4f(0)=−1
Evaluating f(x) at end points x=−4 and x=4
when x=−4,f(−4)=(−4)2−4(−4)2+4f(−4)=35when x=4,f(4)=(4)2−4(4)2+4f(4)=35
Therefore, we have absolute maximum value at f(−4)=f(4)=35 and the absolute minimum value at f(0)=−1 on the interval [−4,4]
No comments:
Post a Comment