Sunday, September 17, 2017

Single Variable Calculus, Chapter 4, 4.1, Section 4.1, Problem 52

Determine the absolute maximum and absolute minimum values of f(x)=x24x2+4 on the interval [4,4].

Taking the derivative of f(x) using Quotient Rule we have,

f(x)=(x2+4)(2x)(x24)(2x)(x2+4)2f(x)=\cancel2x3+8x\cancel2x3+8x(x2+4)2f(x)=16x(x2+4)2

Solving for critical numbers, when f(x)=0


0=16x(x2+4)20=16xx=0



We have either absolute maximum and minimum values at x=0
So,

f(0)=02402+4f(0)=1

Evaluating f(x) at end points x=4 and x=4

when x=4,f(4)=(4)24(4)2+4f(4)=35when x=4,f(4)=(4)24(4)2+4f(4)=35

Therefore, we have absolute maximum value at f(4)=f(4)=35 and the absolute minimum value at f(0)=1 on the interval [4,4]

No comments:

Post a Comment