Find $h'(2)$, given that $f(2) = -3$, $g(2) = 4$, $f'(2) = -2$, and $g'(2) = 7$
$
\begin{equation}
\begin{aligned}
\text{a.) } h(x) &= 5f(x) - 4g(x) &&&
\text{b.) } h(x) &= f(x) g(x)\\
\text{c.) } h(x) & = \frac{f(x)}{g(x)} &&&
\text{d.) } h(x) &= \frac{g(x)}{1+f(x)}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\text{a.) } h(x) & = 5 f(x) - 4g(x)\\
\\
h'(2)& = 5[f'(2)] - 4 [g'(2)]\\
\\
h'(2)& = 5(-2) -4(7)\\
\\
h'(2)& = - 38
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\text{b.) } h(x) & = f(x)4g(x)\\
\\
h'(2)& = f'(2) [g(2)] + g'(2) [f(2)]\\
\\
h'(2)& = -2(4) + 7(-3)\\
\\
h'(2)& = - 29
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\text{c.) } h(x) & = \frac{f(x)}{g(x)}\\
\\
h'(2)& = \frac{g(2)[f'(2)]-f(2)[g'(2)]}{[g(2)]^2}\\
\\
h'(2)& = \frac{4(-2)-(-3)(7)}{(4)^2}\\
\\
h'(2)& = \frac{13}{16}
\end{aligned}
\end{equation}
$
$
\begin{equation}
\begin{aligned}
\text{d.) } h(x) & = \frac{g(x)}{1+f(x)}\\
\\
h'(2)& = \frac{[1+f(2)]g'(2)-g(2)[0+f'(2)]}{[1+f(2)]^2}\\
\\
h'(2)& = \frac{[1+(-3)]7-4[0+(-2)]}{[1+(-3)]^2}\\
\\
h'(2)& = \frac{-3}{2}
\end{aligned}
\end{equation}
$
No comments:
Post a Comment