Find h′(2), given that f(2)=−3, g(2)=4, f′(2)=−2, and g′(2)=7
a.) h(x)=5f(x)−4g(x)b.) h(x)=f(x)g(x)c.) h(x)=f(x)g(x)d.) h(x)=g(x)1+f(x)
a.) h(x)=5f(x)−4g(x)h′(2)=5[f′(2)]−4[g′(2)]h′(2)=5(−2)−4(7)h′(2)=−38
b.) h(x)=f(x)4g(x)h′(2)=f′(2)[g(2)]+g′(2)[f(2)]h′(2)=−2(4)+7(−3)h′(2)=−29
c.) h(x)=f(x)g(x)h′(2)=g(2)[f′(2)]−f(2)[g′(2)][g(2)]2h′(2)=4(−2)−(−3)(7)(4)2h′(2)=1316
d.) h(x)=g(x)1+f(x)h′(2)=[1+f(2)]g′(2)−g(2)[0+f′(2)][1+f(2)]2h′(2)=[1+(−3)]7−4[0+(−2)][1+(−3)]2h′(2)=−32
No comments:
Post a Comment