Thursday, September 21, 2017

Single Variable Calculus, Chapter 3, 3.3, Section 3.3, Problem 64

Find h(2), given that f(2)=3, g(2)=4, f(2)=2, and g(2)=7

a.) h(x)=5f(x)4g(x)b.) h(x)=f(x)g(x)c.) h(x)=f(x)g(x)d.) h(x)=g(x)1+f(x)



a.) h(x)=5f(x)4g(x)h(2)=5[f(2)]4[g(2)]h(2)=5(2)4(7)h(2)=38



b.) h(x)=f(x)4g(x)h(2)=f(2)[g(2)]+g(2)[f(2)]h(2)=2(4)+7(3)h(2)=29



c.) h(x)=f(x)g(x)h(2)=g(2)[f(2)]f(2)[g(2)][g(2)]2h(2)=4(2)(3)(7)(4)2h(2)=1316



d.) h(x)=g(x)1+f(x)h(2)=[1+f(2)]g(2)g(2)[0+f(2)][1+f(2)]2h(2)=[1+(3)]74[0+(2)][1+(3)]2h(2)=32

No comments:

Post a Comment