Given G(x)=2(3+√x)2, find functions f,g and h such that F=f∘g∘h
Since the formula for G says to first take the square root and add 3. Then take the square and lastly, the result is the divisor of 2.
h(x)=3+√x,g(x)=x2, and f(x)=1x
Then (f∘g∘h)(x)=f(g(h(x)))Definition of f∘g∘h(f∘g∘h)(x)=f(g(3+√x))Definition of h(f∘g∘h)(x)=f((3+√x)2)Definition of g(f∘g∘h)(x)=1(3+√x)2Definition of f(f∘g∘h)(x)=G(x)
No comments:
Post a Comment