Given $\displaystyle G(x) = \frac{2}{(3+\sqrt{x})^2}$, find functions $f,g$ and $h$ such that $F = f \circ g \circ h$
Since the formula for $G$ says to first take the square root and add 3. Then take the square and lastly, the result is the divisor of 2.
$h(x) = 3+\sqrt{x}, \quad g(x) = x^2, \quad$ and $\displaystyle f(x) = \frac{1}{x}$
$
\begin{equation}
\begin{aligned}
\text{Then } (f\circ g\circ h)(x) &= f(g(h(x))) && \text{Definition of } f \circ g \circ h\\
\\
(f\circ g\circ h)(x) &= f(g(3+\sqrt{x})) && \text{Definition of } h\\
\\
(f\circ g\circ h)(x) &= f\left((3+\sqrt{x})^2 \right) && \text{Definition of } g\\
\\
(f\circ g\circ h)(x) &= \frac{1}{(3 + \sqrt{x})^2} && \text{Definition of } f\\
\\
(f\circ g\circ h)(x) &= G(x)
\end{aligned}
\end{equation}
$
No comments:
Post a Comment