If f″(x)=x−2, x>0, f(1)=0 and f(2)=0, find f
If f″(x)=x−2, then by applying integration...
f′(x)=∫x−2dx=x−1−1+c1=−1x+c1
Again, by applying integration...
f(x)=∫(−1x+c1)dxf(x)=−lnx+c1x+c2
If f(1)=0, then
0=−ln(1)+c1(1)+c20=c1+c2c1=−c2⟸(Equation 1)
Also, if f(2)=0, then
0=−ln(2)+c1(2)+c2ln(2)=2c1+c2⟸(Equation 2)
By using Equations 1 and 2 simultaneously...
ln(2)=2c1−c1c1=ln2
Thus, c2=−ln2
Therefore,
f(x)=−lnx+xln(2)−ln(2)
No comments:
Post a Comment