Sunday, August 27, 2017

Single Variable Calculus, Chapter 7, 7.4-1, Section 7.4-1, Problem 86

If f(x)=x2, x>0, f(1)=0 and f(2)=0, find f
If f(x)=x2, then by applying integration...

f(x)=x2dx=x11+c1=1x+c1

Again, by applying integration...

f(x)=(1x+c1)dxf(x)=lnx+c1x+c2


If f(1)=0, then

0=ln(1)+c1(1)+c20=c1+c2c1=c2(Equation 1)

Also, if f(2)=0, then

0=ln(2)+c1(2)+c2ln(2)=2c1+c2(Equation 2)

By using Equations 1 and 2 simultaneously...

ln(2)=2c1c1c1=ln2

Thus, c2=ln2
Therefore,
f(x)=lnx+xln(2)ln(2)

No comments:

Post a Comment