At what rate is the height of the water increasing?
Given: $\displaystyle r = 5m, \frac{dv}{dt} = 3m^3/min$
Required: $\displaystyle \frac{dh}{dt}$
Solution: Let $V = \pi r^2h$ be the volume of the cylinder
where $r$ = radius
$\qquad h$ = height
It is also stated in the problem that $r$ is a constant so,
$
\begin{equation}
\begin{aligned}
\frac{dv}{dt} =& \frac{dv}{dh} \left( \frac{dh}{dt} \right) = \pi r^2 \left( \frac{dh}{dt} \right)
\\
\\
\frac{dv}{dt} =& \pi r^2 \left( \frac{dh}{dt} \right)
\\
\\
\frac{dh}{dt} =& \frac{1}{\pi r^2} \left( \frac{dv}{dt} \right)
\\
\\
\frac{dh}{dt} =& \frac{1}{\pi (5)^2} (3)
\\
\\
\end{aligned}
\end{equation}
$
$\fbox{$\large \frac{dh}{dt} = \frac{3}{25 \pi} m/min $}$
No comments:
Post a Comment