Saturday, August 26, 2017

College Algebra, Chapter 3, 3.6, Section 3.6, Problem 44

Determine the functions fg,gf,ff and gg and their domains if f(x)=2x and g(x)=xx+2
For fg,

(fg)(x)=f(g(x))Definition of fg(fg)(x)=f(xx+2)Definition of g(fg)(x)=2xx+2Simplify(fg)(x)=2(x+2)xDefinition of f

The function can't have a denominator equal to zero.
So the domain of fg is (,0)(0,)

For gf

(gf)(x)=g(f(x))Definition of gf(gf)(x)=g(2x)Definition of f(gf)(x)=2x2x+2Simplify(gf)(x)=2x2x(1+x)Simplify(gf)(x)=11+xDefinition of g

The denominator is not defined when x=y. So the domain of gf is (,1)(1,)

For ff,

(ff)(x)=f(f(x))Definition of ff(ff)(x)=f(2x)Definition of f(ff)(x)=22xSimplify(ff)(x)=xDefinition of f

The function is define for all values of x, so the domain of ff is (,)

For gg,

(gg)(x)=g(g(x))Definition of gg(gg)(x)=g(xx+2)Definition of g(gg)(x)=xx+2xx+2+2Simplify(gg)(x)=x\cancelx+2x+2x+4\cancelx+2Simplify(gg)(x)=x3x+4Definition of g

The denominator is not define when x=43. So the domain of gg is (,43)(43,)

No comments:

Post a Comment