Determine the functions f∘g,g∘f,f∘f and g∘g and their domains if f(x)=2x and g(x)=xx+2
For f∘g,
(f∘g)(x)=f(g(x))Definition of f∘g(f∘g)(x)=f(xx+2)Definition of g(f∘g)(x)=2xx+2Simplify(f∘g)(x)=2(x+2)xDefinition of f
The function can't have a denominator equal to zero.
So the domain of f∘g is (−∞,0)⋃(0,∞)
For g∘f
(g∘f)(x)=g(f(x))Definition of g∘f(g∘f)(x)=g(2x)Definition of f(g∘f)(x)=2x2x+2Simplify(g∘f)(x)=2x2x(1+x)Simplify(g∘f)(x)=11+xDefinition of g
The denominator is not defined when x=y. So the domain of g∘f is (−∞,−1)⋃(−1,∞)
For f∘f,
(f∘f)(x)=f(f(x))Definition of f∘f(f∘f)(x)=f(2x)Definition of f(f∘f)(x)=22xSimplify(f∘f)(x)=xDefinition of f
The function is define for all values of x, so the domain of f∘f is (−∞,∞)
For g∘g,
(g∘g)(x)=g(g(x))Definition of g∘g(g∘g)(x)=g(xx+2)Definition of g(g∘g)(x)=xx+2xx+2+2Simplify(g∘g)(x)=x\cancelx+2x+2x+4\cancelx+2Simplify(g∘g)(x)=x3x+4Definition of g
The denominator is not define when x=−43. So the domain of g∘g is (−∞,−43)⋃(−43,∞)
No comments:
Post a Comment