Saturday, July 29, 2017

Single Variable Calculus, Chapter 8, 8.1, Section 8.1, Problem 10

Evaluate sin1xdx
If we let u=sin1x and dv=dx, then
du=11x2dx and v=dx=x

So,
sin1xdx=uvvdu=xsin1xx1x2dx
To evaluate x1x2dx we let u1=1x2, then du1=2xdx


Then,

x1x2dx=du12u1=12u121du1=12[u12112]=(u1)12+c=(1x2)12+c


Therefore,

sin1xdx=xsin1x[(1x2)12]+c=xsin1x+(1x2)12+c

No comments:

Post a Comment