Evaluate ∫sin−1xdx
If we let u=sin−1x and dv=dx, then
du=1√1−x2dx and v=∫dx=x
So,
∫sin−1xdx=uv−∫vdu=xsin−1x−∫x√1−x2dx
To evaluate ∫x√1−x2dx we let u1=1−x2, then du1=−2xdx
Then,
∫x√1−x2dx=∫−du12√u1=−12∫u−121du1=−12[u12112]=−(u1)12+c=−(1−x2)12+c
Therefore,
∫sin−1xdx=xsin−1x−[−(1−x2)12]+c=xsin−1x+(1−x2)12+c
No comments:
Post a Comment