a.) Determine the equation of the tangent line to the curve y=2xsinx at the point (π2,π)
y′=(2x)ddx(sinx)+(sinx)2ddx(x)y′=2xcosx+2sinx
Let y′=mT (slope of the tangent line)
y′=mT=2(π2)cos(π2)+2sin(π2)Substitute value of xmT=2
Using Point Slope Form substitute the values of x,y and mT
y−y1=m(x−x1)y−π=2(x−π2)y−π=2x−2π2y=2x−π+πy=2xEquation of the tangent line at (π2,π)
b.) Graph the curve and the tangent line in part (a) on the same screen
No comments:
Post a Comment