Monday, July 24, 2017

Single Variable Calculus, Chapter 3, 3.4, Section 3.4, Problem 25

a.) Determine the equation of the tangent line to the curve y=2xsinx at the point (π2,π)


y=(2x)ddx(sinx)+(sinx)2ddx(x)y=2xcosx+2sinx




Let y=mT (slope of the tangent line)


y=mT=2(π2)cos(π2)+2sin(π2)Substitute value of xmT=2


Using Point Slope Form substitute the values of x,y and mT


yy1=m(xx1)yπ=2(xπ2)yπ=2x2π2y=2xπ+πy=2xEquation of the tangent line at (π2,π)



b.) Graph the curve and the tangent line in part (a) on the same screen

No comments:

Post a Comment