Factor the polynomial $P(x) = x^3 - 64$, and find all its zeros. State the multiplicity of each zero.
To find the zeros of $P$, we set $x^3 - 64 = 0$, by factoring
Using difference of cube, we set
$
\begin{equation}
\begin{aligned}
x^3 - 64 =& 0
\\
\\
(x - 4)(x^2 + 4x + 16) =& 0
\end{aligned}
\end{equation}
$
By using quadratic formula,
$
\begin{equation}
\begin{aligned}
x =& \frac{-4 \pm \sqrt{4^2 - 4(1)(16)}}{2(1)}
\\
\\
=& \frac{-4 \pm \sqrt{-48}}{2}
\\
\\
=& \frac{-4 \pm 4 \sqrt{-3}}{2}
\\
\\
=& -2 \pm 2 \sqrt{-3}
\\
\\
=& -2 \pm 2 \sqrt{3} i
\end{aligned}
\end{equation}
$
So the zeros of $P$ are $4, -2 + \sqrt{3} i$ and $-2 - \sqrt{3} i$.
By factorization,
$
\begin{equation}
\begin{aligned}
P(x) =& x^3 - 64
\\
\\
=& (x - 4) \left[ x - (-2 + \sqrt{3} i) \right] \left[ x - (-2 - \sqrt{3} i) \right]
\\
\\
=& (x - 4) \left[ x + (2 - \sqrt{3} i) \right] \left[ x + (2 + \sqrt{3} i) \right] \left[ x + (2 + \sqrt{3} i) \right]
\end{aligned}
\end{equation}
$
We can say that each factors have multiplicity of $1$.
No comments:
Post a Comment