Wednesday, June 28, 2017

Single Variable Calculus, Chapter 7, 7.2-2, Section 7.2-2, Problem 42

Find f(e) if f(x)=lnxx


if f(x)=lnxx, then by using Quotient Rulef(x)=xddx(lnx)(lnx)ddx(x)x2f(x)=x(1x)lnx(1)x2f(x)=1lnxx2


Again, by using Quotient Rule


f(x)=x2ddx(1lnx)(1lnx)ddx(x2)(x2)2f(x)=x2(1x)(1lnx)(2x)x4f(x)=x(12+2lnx)x4f(x)=3+2lnxx3


Thus,


f(e)=3+2ln(e)e3f(e)=3+2(1)e3f(e)=1e3

No comments:

Post a Comment