Find f″(e) if f(x)=lnxx
if f(x)=lnxx, then by using Quotient Rulef′(x)=x⋅ddx(lnx)−(lnx)⋅ddx(x)x2f′(x)=x(1x)−lnx(1)x2f′(x)=1−lnxx2
Again, by using Quotient Rule
f″(x)=x2⋅ddx(1−lnx)−(1−lnx)⋅ddx(x2)(x2)2f″(x)=x2(−1x)−(1−lnx)(2x)x4f″(x)=x(−1−2+2lnx)x4f″(x)=−3+2lnxx3
Thus,
f″(e)=−3+2ln(e)e3f″(e)=−3+2(1)e3f″(e)=−1e3
No comments:
Post a Comment