Identify the type of curve which is represented by the equation $\displaystyle \frac{x^2}{12} + \frac{y^2}{144} = \frac{y}{12}$.
Find the foci and vertices(if any), and sketch the graph
$
\begin{equation}
\begin{aligned}
12x^2 + y^2 &= 12 y && \text{Multiply by } 144\\
\\
12x^2 + y^2 - 12y &= 0 && \text{Subtract }12y \\
\\
12x^2 + y^2 - 12y + 36 &= 36 && \text{Complete the square: Add } \left( \frac{-12}{2} \right)^2 = 36\\
\\
12x^2 + (y - 6)^2 &= 36 && \text{Perfect square}\\
\\
\frac{x^2}{3} + \frac{(y-6)^2}{36} &= 1 && \text{Divide by } 36
\end{aligned}
\end{equation}
$
Since the equation is a sum of the squares, then it is an ellipse. The shifted ellipse has the form $\displaystyle \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$
with center at $(h,k)$ and vertical major axis. It is derived from the ellipse $\displaystyle \frac{x^2}{3} + \frac{y^2}{36} = 1$ with center at origin by
shifting it $6$ units upward. Thus, by applying transformation
$
\begin{equation}
\begin{aligned}
\text{center } & (h,k) && \rightarrow && (0,6)\\
\\
\text{vertices:major axis } & (0,a)&& \rightarrow && (0,6) && \rightarrow && (0,6+6) && = && (0,12)\\
\\
& (0,-a)&& \rightarrow && (0,-6) && \rightarrow && (0,-6+6) && = && (0,0)\\
\\
\text{minor axis } & (b,0)&& \rightarrow && (\sqrt{3},0) && \rightarrow && (\sqrt{3},0+6) && = && (\sqrt{3},6)\\
\\
& (-b,0)&& \rightarrow && (-\sqrt{3},0) && \rightarrow && (-\sqrt{3},0+6) && = && (\sqrt{3},6)
\end{aligned}
\end{equation}
$
The foci of the unshifted ellipse are determined by $c = \sqrt{a^2 - b^2} = \sqrt{3c - 3} = \sqrt{33}$
Thus, by applying transformation
$
\begin{equation}
\begin{aligned}
\text{minor axis } & (0,c)&& \rightarrow && (0,\sqrt{33}) && \rightarrow && (0,\sqrt{33}+6) && = && (0,6+\sqrt{33})\\
\\
& (0,-c)&& \rightarrow && (0,-\sqrt{33}) && \rightarrow && (0,\sqrt{33}+6) && = && (0,6-\sqrt{33})
\end{aligned}
\end{equation}
$
Therefore, the graph is
No comments:
Post a Comment