Find y″: For g(x)=6x5+2x4−4x3+7x2−8x+3, find g(7)(x)
g′(x)=ddx[6x5+2x4−4x3+7x2−8x+3]=30x4+8x3−12x2+14x−8g″(x)=ddx[30x4+8x3−12x2+14x−8]=120x3+24x2−24x+14g‴(x)=ddx[120x3+24x2−24x+14]=360x2+48x−24g(4)(x)=ddx[360x2+48x−24]=720x+48g(5)(x)=ddx[720x+48]=720g(6)(x)=ddx[720]=0g(7)(x)=ddx[0]=0
No comments:
Post a Comment